Perhatikanpernyataan-pernyataan berikut. (1) fisika sebagai produk. (2) fisika sebagai sikap. May 24, 2019 Post a Comment Perhatikan pernyataan-pernyataan berikut. (1)
berikut merupakan pernyataan yang benar, kecuali ? A. 8 bukan bilangan primaB. 1 menit = 60 detikc. -3 - -4 = -7d. 5×3 = 3× x dari 3x - 2 = x + 10 untuk x € B adalah? a. 8b. 6c. 5d. diketahui a + 7 =9, maka nilai dari a + 23 adalah ?a. 16b. 25c. 39d. N yang memenuhi persamaan linear satu variabel 9n - 2 = 4n + 8 adalah. ?a. 10b. 8c. 4d. 2 Jawaban 1. c2. a3. b4. d
Diketahuidata pada tabel berikut. Jika kuartil atasnya adalah 49,1. Tentukan nilai x. PEMBAHASAN : Karena titik tengah memiliki selisih = 3, maka panjang interval kelasnya (c) = 3. Kuartil atas berada pada titik tengah 49,1 berada pada interval 48-50. Berlaku rumus sebagai berikut: keterangan: t b = tepi bawah kelas modus d 1 = selisih
– Pendaftaran beasiswa Lembaga Pengelola Dana Pendidikan LPDP 2023 Tahap 2 dibuka pada 9 Juni 2023. Hal itu dikonfirmasi oleh Person In Charge PIC Beasiswa LPDP Berliana Abidah Oktoviani. “Untuk tanggal buka sesuai jadwal, tanggal 9 Juni sampai dengan 9 Juli 2023,” ucap Berliana dikutip dari Kamis 8/6/2023.Beasiswa LPDP ini ditujukan bagi mahasiswa yang ingin melanjutkan pendidikan ke jenjang perkuliahan selanjutnya di kampus dalam maupun luar negeri dengan berbagai benefit yang akan didapatkan. Perlu diketahui, LPDP 2023 Tahap 2 ini diberlakukan untuk perkuliahan paling cepat bulan Januari 2024. Baca juga Pendaftaran LPDP 2023 Tahap 2 Jadwal, Syarat, Benefit, dan Cara Daftarnya Link pendaftaran LPDP 2023 Tahap 2 Pendaftaran LPDP 2023 Tahap 2 dilakukan secara online melalui laman resmi yang telah disiapkan lengkap dengan link tersebut Baca juga Pendaftaran SIMAK UI 2023 Dibuka, Berikut Daya Tampung, Biaya, dan Cara Daftarnya! Cara dan alur pendaftaran LPDP 2023 Tahap 2 Sebelum mendaftar, pastikan untuk dokumen-dokumen pendukung seperti Surat Rekomendasi, Surat Keterangan, atau surat lainnya diterbitkan pada 2023 dan sesuai ketentuan. Adapun cara mendaftar LPDP 2023 Tahap 2 dikutip dari laman resmi LPDP sebagai berikut Buka laman Klik “Masuk” pada bagian Beasiswa LPDP Jika belum mempunyai akun, klik “Belum punya akun? Buat akun di sini” Klik “Ok” Isi formulir pendaftaran yang telah disediakan dengan informasi dengan benar dan sesuai Setelah mengisi lengkap formulir pendaftaran, klik “Buat akun”. Satu orang pendaftar hanya boleh memiliki satu akun Sistem akan mengirim link verifikasi pada email yang didaftarkan saat mengisi formulir, lalu buka email tersebut Klik “Verifikasi Akun” Masuk kembali ke laman awal, lalu login dengan memasukkan email dan password yang telah didaftarkan sebelumnya Setelah login, dapat melihat, mengubah, atau melengkapi infomrasi terkait informasi diri dan keluarga Jika sudah lengkap dan benar, klik “Ok” Klik “Verifikasi Nomor WhatsApp” Pendaftar akan diarahkan pada halaman Verifikasi Nomor dengan mekanisme kode OTP dikirimkan ke nomor yang sudah didaftarkan. Untuk mendapatkan kode OTP, klik “Kirim OTP” Lakukan pengecekan berkala pada aplikasi WhatsApp yang nomornya sudah didaftarkan Isi Kode OTP yang didapatkan di halaman Verifikasi Nomor. Klik “Validasi”. Jika belum berhasil diklik, ulangi langkah verifikasi dengan Kode OTP Verifikasi nomor sukses dilakukan dan akan diarahkan ke profil pendaftar Jika sudah masuk ke halaman profil, pilih menu “Beasiswa” lalu klik “Daftar Beasiswa” Muncul ketentuan dan syarat masing-masing program beasiswa LPDP. Jika sudah membaca dan yakin, klik “Ok” Muncul informasi jenis-jenis beasiswa, scroll ke bawah dan klik “Daftar” Unggah foto diri sesuai dengan kriteria. Jika sudah mengunggah, silahkan checklist kotak pernyataan dan klik “daftar Beasiswa” Masukkan Nomor Induk Mahasiswa yang sesuai, kemudian klik “Validasi” Muncul Verifikasi Data Pendidikan terakhir, lalu klik “Verifikasi” Isi formulir dengan informasi yang benar dan sesuai. Jika sudah, klik “Berikutnya” Pilih apakah sudah atau belum memiliki LoA Unconditional dari Perguruan Tinggi Tujuan LPDP. Jika sudah, maka dokumen tersebut harus diunggah pada halaman. Jika sudah, klik “Berikutnya” Memilih program beasiswa yang diinginkan sesuai data diri yang sudah dimasukkan. Jika sudah, klik “Berikutnya” Mengisi informasi mengenai kapan akan memulai studi dengan memilih tahun dan bulan perkiraan mulai studi. Jika sudah, klik “berikutnya” Mengisi tentang program studi prodi yang diinginkan. Jika sudah, klik “Berikutnya” Mengisi informasi perguruan tinggi tujuan dan prodi yang sesuai dengan LoA Unconditional jika sebelumnya menyatakan memiliki berkas tersebut. Namun jika tidak memiliki, dierpluka untuk memberikan tiga perguruan tinggi tujuan dan prodi yang sejenis atau serumpun. Jika sudah, klik “Berikutnya” Mengisi nama kota yang akan menjadi tempat pendaftar melakukan seleksi substansi jika seleksi dilakukan secara luring. Muncul pertanyaan mengenai apakah sedang atau akan menerima beasiswa lain. Jika menjawab “Ya”, maka pendaftar tidak dapat melanjutkan pendaftaran. Jika sudah, klik “Ok” Melengkapi informasi penilaian diri terkait kelebihan dan kekurangan pendaftar, pengalaman mendapatkan beasiswa sebelumnya, pengalaman organisasi, pekerjaan, dan pendidikan. Jika sudah, klik “Simpan” Mengisi informasi tentang prestasi dan penghargaan yang pernah diraih. Jika sudah, klik “Simpan” Mengunggah seluruh dokumen yang diperlukan dengan format yang sudah ditentukan. Jika sudah, klik “Unggah” Melakukan submit pendaftaran. Pada halaman ini, akan ditampilkan ringkasan formular dan informasi data diri yang sudah diisi. Klik “Pernyataan Beasiswa Pendidikan Indonesia” jika menyanggupi pernyataan yang dalam dalam surat pernyataan di halaman yang sama. Muncul surat pernyataan untuk dibaca tiap poinnya dengan cermat. Jika sudah, klik “Saya Setuju” Mendapatkan pertanyaan terkait pernyataan yang sudah pendaftar setujui, lalu klik “Ok” Pendaftaran berhasil. Silahkan cek secara berkala mengenai status pendaftaran dengan klik “Daftar Beasiswa” pada menu “Beasiswa” Sistem akan mengirimkan hasil seleksi administrasi oleh tim LPDP sesuai jadwal yang sudah ditentukan. Pendaftar dapat melihat hasil seleksi dengan klik “Status” pada menu “Daftar Beasiswa” Dilanjutkan dengan tahapan seleksi lainnya yakni seleksi skolastik dan substansi sesuai jadwal yang sudah ditentukan. Untuk informasi lebih lengkap mengenai cara dan alur pendaftaran LPDP 2023 Tahap 2, silakan klik User Manual Pendaftaran LPDP Baca juga Catat, Tanggal-tanggal Penting Jalur Mandiri UI, ITB, IPB, dan Undip 2023
Diketahuibeberapa pernyataan sebagai berikut! 1) intan memiliki kekerasan lebih tinggi daripada emas 2) bensin lebih mudah terbakar daripada minyak tanah 3) titik beku
Yuk, tingkatkan persiapanmu dengan contoh latihan soal TPS UTBK 2023 subtes Pengetahuan Kuantitatif beserta pembahasannya di bawah ini. Selamat mengerjakan! — Topik Bilangan Subtopik Konsep Kilat Pola Bilangan NEW! 1. Diketahui merupakan suku ke-n dari suatu barisan geometri dengan tiga suku pertamanya berturut-turut adalah . Suku kelima dari barisan tersebut adalah …. Jawaban B Pembahasan Diketahui merupakan suku ke-n dari suatu barisan geometri dengan tiga suku pertamanya berturut-turut adalah . Lalu, ditanyakan suku kelima dari barisan tersebut. Untuk menentukan suku kelima barisan tersebut, terdapat beberapa langkah yang diperlukan seperti di bawah ini. Langkah Pertama Tentukan nilai dari p. Diketahui tiga suku pertama suatu barisan geometri adalah . Ingat bahwa rasio pada barisan geometri dapat ditentukan sebagai berikut. Oleh karena itu, diperoleh hubungan sebagai berikut. Berdasarkan perhitungan di atas, diperoleh nilai . Langkah Kedua Tentukan suku kelima barisan tersebut. Berdasarkan nilai p yang sudah didapat, maka tiga suku pertama dari barisan tersebut adalah sebagai berikut. Lalu, diperoleh suku pertamanya adalah dan rasionya adalah Oleh karena itu, suku kelima barisan tersebut dapat ditentukan sebagai berikut. Dengan demikian, suku kelima dari barisan geometri tersebut adalah . Jadi, jawaban yang tepat adalah B. Topik Aljabar dan Fungsi Subtopik Konsep Kilat Persamaan Garis Lurus NEW! 2. Diketahui persamaan garis g adalah dan persamaan garis h adalah . Jika garis g dan garis h saling sejajar, nilai dari -2p adalah …. 14 7 -7 -14 -16 Jawaban D Pembahasan Ingat bahwa gradien dari garis dengan persamaan adalah . Diketahui persamaan garis g ada . Perhatikan persamaan berikut! Dari bentuk tersebut, didapat bahwa gradien garis g adalah . Kemudian, diketahui persamaan garis h adalah . Perhatikan persamaan berikut! Dari bentuk tersebut, didapat bahwa gradien garis h adalah . Karena garis g dan h saling sejajar, maka diperoleh hubungan sebagai berikut. Berdasarkan perhitungan di atas, diperoleh p = 7. Dengan demikian, nilai dari -2p adalah -2.7 = -14. Jadi, jawaban yang tepat adalah D. Topik Geometri Subtopik Konsep Kilat Bangun Datar NEW! 3. Perhatikan gambar berikut! Luas dan keliling segi empat ABCD berturut-turut adalah p satuan luas dan q satuan panjang dengan p q = 31 dan diketahui . Panjang adalah … satuan panjang. Jawaban E Pembahasan Perhatikan gambar berikut! Diketahui . Misal panjang dengan a > 0, maka didapat panjang dan . Karena yang ditanyakan adalah panjang , maka akan ditentukan nilai dari a. Perhatikan bahwa segitiga ABC siku-siku di titik B. Oleh karena itu, berlaku Teorema Pythagoras sebagai berikut. Kemudian, segitiga ACD siku-siku di titik D. Oleh karena itu, berlaku Teorema Pythagoras sebagai berikut. Dengan demikian, didapat hubungan sebagai berikut. Karena panjang tidak mungkin bernilai negatif, maka panjang . Selanjutnya, luas segi empat ABCD dapat ditentukan dengan menjumlahkan luas segitiga ABC dan ACD sebagai berikut.. Diketahui bahwa luas segi empat ABCD adalah p satuan luas. Oleh karena itu, didapat nilai . Kemudian, keliling segi empat ABCD dapat ditentukan sebagai berikut. Diketahui bahwa keliling segi empat ABCD adalah q satuan panjang. Oleh karena itu, didapat nilai . Karena p q = 3 1, maka didapat hubungan sebagai berikut. Ingat bahwa telah dimisalkan sebelumnya panjang . Dengan demikian, panjang adalah 6 satuan panjang. Jadi, jawaban yang tepat adalah E. Topik Statistika dan Peluang Subtopik Konsep Kilat Aturan Pencacahan NEW! 4. Diketahui pada suatu seleksi calon karyawan terdapat 3 orang pria dan 4 orang wanita yang duduk secara melingkar. Dalam seleksi tersebut, mereka wajib mengerjakan 8 soal dari 12 soal tes yang diberikan dan akan dipilih 3 orang yang lolos seleksi sebagai karyawan. Berdasarkan informasi tersebut, manakah di antara pilihan berikut yang bernilai benar? Banyak cara duduk calon karyawan tersebut adalah 210 cara. Jika 5 soal pertama wajib dikerjakan, banyak kemungkinan pilihan soal yang dikerjakan dari setiap calon karyawan adalah 120 cara. Banyak kemungkinan variasi peserta yang lolos seleksi adalah 70. Banyak kemungkinan jika seorang pria dan 2 orang wanita yang lolos seleksi adalah 18. 1, 2, dan 3 SAJA yang benar. 1 dan 3 SAJA yang benar. 2 dan 4 SAJA yang benar. HANYA 4 yang benar. SEMUA pilihan benar. Jawaban D Pembahasan Akan ditentukan nilai kebenaran dari setiap pilihan berikut. Pilihan 1 Banyak cara duduk calon karyawan tersebut adalah 210 cara. Diketahui terdapat 3 orang pria dan 4 orang wanita yang duduk secara melingkar. Ingat bahwa jika terdapat n objek yang disusun secara melingkar, maka banyak cara menyusun objek dapat dihitung dengan permutasi siklis berikut. Pada tes seleksi calon karyawan terdapat 7 orang yang duduk melingkar. Banyak cara duduk 7 orang tersebut ditentukan sebagai berikut. Didapat banyak cara duduk calon karyawan tersebut adalah 720 cara. Oleh karena itu, pilihan 1 bernilai SALAH. Pilihan 2 Jika 5 soal pertama wajib dikerjakan, maka banyak kemungkinan pilihan soal yang dikerjakan dari setiap calon karyawan adalah 120 cara. Diketahui setiap calon karyawan wajib mengerjakan 8 dari 12 soal tes yang diberikan. Jika 5 soal pertama wajib dikerjakan, maka tersisa 8 – 5 = 3 soal lagi yang harus dikerjakan dari 12 – 5 = 7 soal yang tersisa. Banyak kemungkinan pilihan soal yang dikerjakan dari setiap karyawan dapat dihitung dengan menentukan banyak kombinasi 3 dari 7 soal yang dikerjakan, yaitu sebagai berikut. Didapat bahwa banyaknya kemungkinan pilihan soal yang dikerjakan dari setiap calon karyawan adalah 35 cara. Oleh karena itu, pilihan 2 bernilai SALAH. Pilihan 3 Banyak kemungkinan variasi peserta yang lolos seleksi adalah 70. Diketahui terdapat 3 orang pria dan 4 orang wanita sehingga banyak calon karyawan adalah 7 orang. Banyak kemungkinan bagi 3 orang lolos seleksi dari 7 orang tersebut dapat ditentukan dengan menghitung banyak kombinasi 3 dari 7 orang calon karyawan, yaitu . Telah didapatkan dari perhitungan sebelumnya bahwa . Akibatnya, banyak kemungkinan 3 orang lolos seleksi adalah 35. Oleh karena itu, pilihan 3 bernilai SALAH. Pilihan 4 Banyak kemungkinan jika seorang pria dan 2 orang wanita yang lolos seleksi adalah 18. Diketahui terdapat 3 orang pria yang mengikuti seleksi. Banyaknya cara 1 orang pria lolos seleksi dapat ditentukan dengan . Diketahui juga terdapat 4 orang wanita yang mengikuti seleksi. Banyaknya cara 2 orang wanita lolos seleksi dapat ditentukan dengan . Karena kejadian terpilih 1 dari 3 orang pria dan 2 dari 4 orang wanita merupakan dua kejadian yang saling bebas, maka banyak kemungkinan 1 orang pria dan 2 orang wanita lolos seleksi dapat ditentukan sebagai berikut. Didapat banyak kemungkinannya adalah 18. Oleh karena itu, pilihan 4 bernilai BENAR. Dengan demikian, didapat bahwa HANYA 4 yang benar. Jadi, jawaban yang tepat adalah D. Baca Juga Latihan Soal UTBK 2023 Pengetahuan dan Pemahaman Umum Topik Aljabar dan Fungsi Subtopik Konsep Kilat Fungsi NEW! 5. Diberikan sebuah fungsi dengan n merupakan suatu bilangan bulat. Berdasarkan informasi tersebut, manakah di antara pilihan berikut yang bernilai benar? Jika n adalah bilangan genap, bernilai ganjil. Jika n adalah bilangan ganjil, bernilai ganjil. 1, 2, dan 3 SAJA yang benar. 1 dan 3 SAJA yang benar. 2 dan 4 SAJA yang benar. HANYA 4 yang benar. SEMUA pilihan benar. Jawaban E Pembahasan Perhatikan perhitungan berikut! Selanjutnya, akan diperiksa tiap pernyataan yang ada. Pilihan 1 Jika n adalah bilangan genap, bernilai ganjil. Jika n bilangan genap, juga akan bernilai genap. Oleh karena itu, juga akan bernilai genap. Artinya, untuk suatu bilangan genap , didapat perhitungan sebagai berikut. Karena a genap, maka a + 5 akan bernilai ganjil. Karena pasti merupakan bilangan ganjil, maka adalah suatu bilangan ganjil. Dengan demikian, pilihan 1 bernilai BENAR. Pilihan 2 Jika n adalah bilangan ganjil, bernilai ganjil. Jika n adalah bilangan ganjil, n + 5 akan bernilai genap. Karena pasti merupakan bilangan ganjil, maka adalah suatu bilangan genap. Dengan demikian, fn adalah suatu bilangan genap. Kemudian, jika n adalah bilangan ganjil, 2n adalah bilangan genap. Akibatnya, 2n + 5 akan bernilai ganjil. Oleh karena itu, adalah suatu bilangan ganjil. Dengan demikian, f2n adalah suatu bilangan ganjil. Karena fn adalah suatu bilangan genap dan f2n adalah suatu bilangan ganjil, maka diperoleh bahwa adalah bilangan ganjil. Dengan demikian, pilihan 2 bernilai BENAR. Pilihan 3 Hasil dari dapat ditentukan sebagai berikut. Selanjutnya, hasil dari dapat ditentukan sebagai berikut. Karena didapat hasil dari dan yang sama, yaitu maka . Dengan demikian, pilihan 3 bernilai BENAR. Pilihan 4 Hasil dari dapat ditentukan sebagai berikut. Karena diperoleh , maka pernyataan 4 bernilai BENAR. Jadi, jawaban yang tepat adalah E. Topik Aljabar dan Fungsi Subtopik Konsep Kilat Persamaan dan Fungsi Kuadrat NEW! 6. Diketahui kurva parabola ditranslasikan oleh . Kemudian, bayangannya dirotasikan sejauh berlawanan arah jarum jam dengan berpusat di titik asal sehingga menghasilkan bayangan akhir . Berdasarkan informasi yang diberikan, manakah hubungan antara kuantitas P dan Q berikut yang benar? Kuantitas P lebih besar daripada Q. Kuantitas P lebih kecil daripada Q. Kuantitas P sama dengan Q. Tidak dapat ditentukan hubungan antara kuantitas P dan Q. Jawaban A Pembahasan Diketahui kurva parabola ditranslasikan oleh . Kemudian, bayangannya dirotasikan sejauh berlawanan arah jarum jam dengan berpusat di titik asal sehingga menghasilkan bayangan akhir . Untuk menentukan hubungan antara kuantitas P dan kuantitas Q, terdapat beberapa langkah yang diperlukan seperti di bawah ini. Langkah Pertama Tentukan kuantitas P. Diketahui bahwa kuantitas P adalah jarak dua titik potong bayangan akhir dengan garis x = 3. Untuk menentukan titik potongnya, substitusikan x = 3 ke persamaan bayangan akhir . Oleh karena itu, didapat persamaan sebagai berikut. Diperoleh ordinat dari titik potongnya adalah y = 2 dan y = -1. Akibatnya, koordinat titik potong bayangan akhir dengan garis x = 3 adalah 3, 2 dan 3, -1. Karena absisnya sama, maka jarak kedua titik tersebut dapat ditentukan dengan menghitung selisih dari ordinat kedua titik sebagai berikut. Oleh karena itu, didapat kuantitas P = 3. Langkah Kedua Tentukan kuantitas Q. Diketahui bahwa kuantitas Q = a + 2. Perhatikan bahwa kurva ditranslasikan oleh . Kemudian, bayangannya dirotasikan sejauh berlawanan arah jarum jam dengan berpusat di titik asal sehingga menghasilkan bayangan akhir . Ingat rumus translasi pada suatu titik berikut! Lalu, didapat dan atau dapat dituliskan dengan dan . Substitusikan bentuk x dan y yang telah didapat ke persamaan sehingga didapat persamaan sebagai berikut. Kemudian, bayangannya dirotasikan sejauh berlawanan arah jarum jam dengan berpusat di titik asal sehingga didapat perhitungan sebagai berikut. Lalu, didapat atau dapat dituliskan dengan Substitusikan bentuk yang telah didapat ke persamaan sehingga didapat persamaan sebagai berikut. Dengan demikian, didapat bayangan akhir dari kurva tersebut adalah . Telah diketahui bahwa bayangan akhirnya adalah . Oleh karena itu, didapat hubungan sebagai berikut. Melalui persamaan di atas, maka nilai a dapat ditentukan sebagai berikut. Persamaan dari koefisien y. Persamaan dari konstanta. Berdasarkan dua penyelesaian tersebut, didapat nilai a yang memenuhi keduanya adalah a = -2. Oleh karena itu, didapat kuantitas Q = a + 2 = -2 + 2 = 0. Berdasarkan langkah pertama dan kedua, diperoleh kuantitas P = 3 dan kuantitas Q = 0 sehingga kuantitas P lebih besar daripada Q. Dengan demikian, kuantitas P lebih besar daripada Q. Jadi, jawaban yang tepat adalah A. Topik Statistika dan Peluang Subtopik Konsep Kilat Teori Peluang NEW! 7. Perusahaan X melakukan pengundian doorprize untuk satu orang pemenang. Diketahui peluang terpilihnya karyawan berusia 22—25 tahun adalah 0,18, karyawan berusia 26—30 tahun adalah 0,32, dan sisanya karyawan berusia 31—35 tahun. Diketahui pula peluang terpilihnya karyawan pria dalam rentang usia 31—35 tahun adalah 0,16. Berdasarkan informasi yang diberikan, manakah hubungan antara kuantitas P dan Q berikut yang benar? Kuantitas P lebih besar daripada Q. Kuantitas P lebih kecil daripada Q. Kuantitas P sama dengan Q. Tidak dapat ditentukan hubungan antara kuantitas P dan Q. Jawaban C Pembahasan Diberikan permisalan sebagai berikut. A Kejadian terpilihnya karyawan berusia 22—25 tahun. B Kejadian terpilihnya karyawan berusia 26—30 tahun. C Kejadian terpilihnya karyawan berusia 31—35 tahun. M Kejadian terpilihnya karyawan pria. Akan diperiksa kuantitas P. Perhatikan bahwa peluang terpilihnya karyawan pria jika diketahui karyawan tersebut berusia 31—35 tahun merupakan kejadian bersyarat yang dapat ditentukan sebagai berikut. Karena karyawan di Perusahaan X memiliki kemungkinan 22—25 tahun, 26—30 tahun, atau 31—35 tahun, maka peluang terpilihnya karyawan berusia 31—35 tahun dapat ditentukan sebagai berikut. Kemudian, dari soal juga diketahui peluang terpilihnya karyawan pria dalam rentang usia 31—35 tahun adalah 0,16. Artinya, didapat Dengan demikian, diperoleh perhitungan sebagai berikut. Oleh karena itu, kuantitas P adalah 0,32. Kemudian, perhatikan bahwa kuantitas Q adalah 0,32. Artinya, kuantitas P dan Q bernilai sama. Dengan demikian, kuantitas P sama dengan Q. Jadi, jawaban yang tepat adalah C. Topik Bilangan Subtopik Konsep Kilat Himpunan NEW! 8. Andre, Sansa, dan Banu memiliki sejumlah mata pelajaran favorit yang saling beririsan satu sama lain. Andre menyukai 8 mata pelajaran, Sansa menyukai 9 mata pelajaran, dan Banu menyukai 10 mata pelajaran. Banu tidak menyukai 2 mata pelajaran favorit Andre dan Sansa, tetapi Banu menyukai 3 mata pelajaran favorit Sansa. Kemudian, sebanyak 2 mata pelajaran hanya disukai oleh Andre. Jika tidak ada mata pelajaran yang sama sekali tidak disukai ketiganya, maka berapa banyak mata pelajaran favorit Banu dan Sansa yang bukan mata pelajaran favorit Andre? Putuskan apakah pernyataan 1 dan 2 berikut cukup untuk menjawab pertanyaan tersebut. Banyaknya mata pelajaran favorit ketiganya adalah 1. Banyaknya mata pelajaran favorit Andre yang bukan mata pelajaran favorit Banu adalah 4. Pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup. Pernyataan 2 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 1 SAJA tidak cukup. DUA pernyataan BERSAMA-SAMA cukup untuk menjawab pertanyaan, tetapi SATU pernyataan SAJA tidak cukup. Pernyataan 1 SAJA cukup untuk menjawab pertanyaan dan pernyataan 2 SAJA cukup. Pernyataan 1 dan pernyataan 2 tidak cukup untuk menjawab pertanyaan. Jawaban A Pembahasan Dimisalkan himpunan-himpunan sebagai berikut. A Himpunan mata pelajaran favorit Andre. B Himpunan mata pelajaran favorit Banu. C Himpunan mata pelajaran favorit Sansa. Diketahui bahwa Jika banyaknya mata pelajaran favorit ketiganya adalah x dan banyaknya mata pelajaran favorit dari Banu dan Sansa yang tidak disukai oleh Andre adalah y, informasi-informasi pada soal tersebut dapat diilustrasikan dalam diagram Venn berikut. Diketahui bahwa Banu menyukai 3 mata pelajaran favorit Sansa. Artinya, didapat bahwa . Selanjutnya, akan diperiksa setiap pernyataan yang diberikan. Pernyataan 1 Banyaknya mata pelajaran favorit ketiganya adalah 1. Berdasarkan informasi tersebut, maka didapat nilai x = 1. Akibatnya, didapat diagram Venn sebagai berikut. Diketahui bahwa Banu menyukai 3 mata pelajaran favorit Sansa. Akibatnya, didapat Berdasarkan gambar tersebut, didapat bahwa . Oleh karena itu, diperoleh perhitungan sebagai berikut. Artinya, banyaknya mata pelajaran favorit Banu dan Sansa yang bukan mata pelajaran favorit Andre adalah 1. Oleh karena itu, pernyataan 1 SAJA cukup untuk menjawab pertanyaan. Pernyataan 2 Banyaknya mata pelajaran favorit Andre yang bukan mata pelajaran favorit Banu adalah 4. Berdasarkan gambar diagram Venn di awal pembahasan, telah didapat bahwa banyaknya mata pelajaran favorit Andre yang bukan mata pelajaran favorit Banu adalah 2 + 2 = 4. Artinya, tidak ada informasi tambahan yang dapat digunakan untuk menentukan nilai y. Oleh karena itu, pernyataan 2 SAJA tidak cukup untuk menjawab pertanyaan. Dengan demikian, dapat disimpulkan bahwa pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup. Jadi, jawaban yang tepat adalah A. Baca Juga Latihan Soal TPS UTBK 2023 Kemampuan Memahamai Bacaan dan Menulis Topik Pengetahuan Kuantitatif Subtopik Bilangan 9. Tentukan nilai yang tepat untuk mengisi tempat yang kosong pada gambar di bawah ini. A. 35 B. 45 C. 87 D. 24 E. 58 Jawaban E Pembahasan Topik Pengetahuan Kuantitatif Subtopik Bilangan 10. Perhatikan gambar berikut! Nilai y yang memenuhi adalah … A. 9 B. 14 C. 18 D. 20 E. 36 Jawaban A Pembahasan Perhatikan penyelesaian gambar yang pertama. Terapkan langkah penyelesaian dari gambar pertama pada gambar kedua. Topik Pengetahuan Kuantitatif Subtopik Aljabar 11. Jika diketahui nilai m ⋅ n = 10 dan nilai m – n = 3, maka nilai m3 – n3 adalah … A. 27 B. 29 C. 43 D. 63 E. 117 Jawaban E Pembahasan Subtitusikan m ⋅ n = 10 dan nilai m – n = 3, sehingga Topik Pengetahuan Kuantitatif Subtopik Bilangan 12. Jika diketahui nilai a = 3 dan b = 2, maka nilai dari adalah … Jawaban A Pembahasan a = 3 dan b = 2 Topik Pengetahuan Kuantitatif Subtopik Aljabar 13. Jika diketahui x ≠ 0 dan x ≠ 3/2, maka hasil dari perkalian dengan adalah … A. 2/3 B. – 2/3 C. D. 2 E. -2 Jawaban C Pembahasan Topik Pengetahuan Kuantitatif Subtopik Bilangan 14. Suatu proyek dijadwalkan akan selesai dalam waktu 30 hari jika dikerjakan oleh 60 orang pekerja. Memasuki hari ke 21, ada 20 orang pekerja yang sakit dan baru bekerja lagi 5 hari setelahnya, ada 20 orang pulang ke kampung halaman dan kembali setelah 5 hari. Jika setiap pekerja memiliki kemampuan yang sama dan agar proyek selesai tepat waktu, jumlah minimal pekerja yang harus ditambah adalah … pekerja. A. 20 B. 40 C. 100 D. 140 E. 220 Jawaban B Pembahasan Misalkan, banyak pekerja = x. Diketahui Banyak pekerjaan di 5 hari terakhir adalah 500 pekerjaan. Banyak pekerja di 5 hari terakhir adalah 100 orang dan yang sudah ada adalah 60 orang. Jadi, banyak pekerja yang harus ditambah adalah 40 orang. Topik Pengetahuan Kuantitatif Subtopik Aljabar 15. Empat tahun yang lalu rata-rata umur ayah, ibu, dan kakak adalah 34 tahun. Tiga tahun yang lalu rata-rata umur ayah dan kakak adalah 32 tahun. Manakah hubungan yang benar antara kuantitas P dan Q berikut berdasarkan informasi yang diberikan? A. P > Q B. Q > P C. P = Q D. Informasi yang diberikan tidak cukup untuk memutuskan salah satu dari tiga pilihan di atas. Jawaban B Pembahasan Misalkan Umur ayah = x Umur ibu = y Umur kakak = z Rata-rata umur ayah, ibu, dan kakak 4 tahun yang lalu = 34 tahun. Rata-rata umur ayah dan kakak 3 tahun yang lalu = 32 tahun. Dari persamaan 1 dan 2 didapatkan Nilai x + z = 70 substitusikan ke persamaan 1 y adalah umur ibu, jadi umur ibu adalah 44 tahun. Kemudian, lihat tabel P = 44 tahun Q = 45 tahun Nilai Q > P. Jadi, pilihan yang tepat adalah B. Topik Pengetahuan Kuantitatif Subtopik Geometri, Aljabar 16. Tentukan nilai r? 1 a + c = 85o 2 b + c = 130o A. 1 saja cukup, tapi 2 saja tidak cukup. B. 2 saja cukup,tapi 1 saja tidak cukup. C. Dua pernyataan bersama-sama cukup untuk menjawab pertanyaan, tetapi satu pernyataan saja tidak cukup. D. 1 saja cukup, dan 2 saja cukup. E. 1 dan 2 tidak cukup. Jawaban B Pembahasan Perhatikan gambar! a + b + c = 180o, r = a karena saling bertolak belakang. Pernyataan 1 a + c = 85o Oleh karena itu, didapat Karena besar r = a, dan nilai a belum dapat diketahui nilainya, maka pertanyaan tidak dapat dijawab hanya dengan pernyataan 1. Pernyataan 2 Oleh karena itu, didapat Karena besar r = a, maka didapat Oleh karena itu, pertanyaan dapat dijawab hanya dengan pernyataan 2. Jadi, pernyataan 2 saja cukup untuk menjawab pertanyaan, tapi pernyataan 1 saja tidak cukup. Topik Pengetahuan Kuantitatif Subtopik Geometri 17. Suatu kebun berbentuk lingkaran, jika di sekeliling kebun akan ditanami pohon dengan jarak antar pohonnya adalah 2 meter. Berapa banyak pohon yang dibutuhkan? Putuskan pernyataan 1 atau 2 atau keduanya yang cukup untuk menjawab pertanyaan tersebut. 1 Luas kebun = m2 2 Keliling kebun = 440 m A. 1 saja cukup, tapi 2 saja tidak cukup. B. 2 saja cukup,tapi 1 saja tidak cukup. C. Dua pernyataan bersama-sama cukup untuk menjawab pertanyaan, tetapi satu pernyataan saja tidak cukup. D. 1 saja cukup, dan 2 saja cukup. E. 1 dan 2 tidak cukup. Jawaban D Pembahasan Dari soal, diketahui kebun berbentuk lingkaran dan jarak antar pohon adalah 2 meter. Ditanyakan banyak pohon yang dibutuhkan untuk ditanam di sekeliling kebun. Untuk menentukan banyak pohon yang dibutuhkan untuk ditanam, yang perlu diketahui adalah kelilingnya. Pernyataan 1 Luas kebun = m2 Karena kebun berbentuk lingkaran, Tapi karena r adalah ukuran panjang, nilainya pasti positif. Jadi, r = 70 m. Keliling kebun = keliling lingkaran = 2πr. Banyak pohon yang dibutuhkan Dengan pernyataan 1 saja sudah dapat menjawab pertanyaan. Pernyataan 2 Keliling kebun = 440 m Banyak pohon yang dibutuhkan Dengan pernyataan 2 saja sudah dapat menjawab pertanyaan. Jadi, pilihan yang tepat adalah D Topik Pengetahuan Kuantitatif Subtopik Peluang 18. Median tujuh bilangan adalah 12, 18, 6, x, 18, 4, 24 adalah x. Manakah hubungan yang benar antara kuantitas P dan Q berikut berdasarkan informasi yang diberikan? A. P > Q B. Q > P C. P = Q D. 2P = Q E. Informasi yang diberikan tidak cukup untuk memutuskan salah satu dari tiga pilihan di atas. Jawaban B Pembahasan Pertama, urutkan data dari tujuh bilangan. Karena x adalah median dari 7 bilangan, artinya x berada di tengah urutan. 4, 6, 12, x, 15, 18, 24 Nilai x yang mungkin adalah 13 dan 14. Kemudian, tentukan rata-rata dari data Rata-rata data jika nilai x = 13 Jika x = 13, maka Q > P. Rata-rata data jika nilai Jika x = 14, maka P > Q. Karena tidak dapat memutuskan mana jawaban yang tepat, kesimpulannya adalah Informasi yang diberikan tidak cukup untuk memutuskan salah satu dari tiga pilihan di atas. Topik Pengetahuan Kuantitatif Subtopik Geometri 19. Segitiga QRS adalah segitiga sama kaki dengan QR = QS. Titik P terletak pada garis perpanjangan QS. Jika a = 48o dan b = 22o, maka nilai y adalah … A. 40o B. 44o C. 48o D. 60o E. 70o Jawaban A Pembahasan Perhatikan gambar! Perhatikan segitiga PRS, a = 48o , dan b = 22o . Jumlah sudut pada segitiga adalah 180o. Perhatikan segitiga QRS yang merupakan segitiga sama kaki dengan QR = QS, sehingga Jumlah sudut pada segitiga adalah 180o. Topik Pengetahuan Kuantitatif Subtopik Aljabar 20. Suatu garis pada bidang xy melalui titik 2,-1 dan mempunyai gradien 1/2. Manakah di antara titik dengan koordinat berikut yang terletak pada garis itu? 1 0,2 2 -2,0 3 2, -1/2 4 4,0 A. 1,2, dan 3 SAJA yang benar. B. 1 dan 3 SAJA yang benar. C. 2 dan 4 SAJA yang benar. D. HANYA 4 yang benar. E. SEMUA pilihan benar. Jawaban D Pembahasan Untuk menentukan koordinat yang terletak pada garis, maka tentukan terlebih dahulu persamaan garis yang melalui titik tersebut. Garis melalui titik 2,-1 dan mempunyai gradien m = 1/2 dapat ditentukan menggunakan persamaan y – y1 = mx – x1 Ganti nilai x1, y1, dan m dengan nilai yang diketahui dari soal, yaitu Untuk menentukan titik koordinat yang terletak pada garis dapat dilakukan dengan memasukkan koordinat yang ada pada soal ke persamaan garis yang didapat, yaitu . 1 0,2 Titik 0,2 tidak terletak pada garis . 2 -2,0 Titik -2,0 tidak terletak pada garis . 3 2, 1/2 Titik 2, -1/2 tidak terletak pada garis . 4 4,0 Titik 4,0 terletak pada garis . Jadi, pilihan yang tepat adalah D yaitu HANYA 4 saja yang benar. Topik Pengetahuan Kuantitatif Subtopik Peluang 21. Tersedia 8 kursi yang disusun berjajar dan setiap kursi ditempati paling banyak oleh satu orang. Manakah hubungan yang benar antara kuantitas P dan Q berdasarkan informasi berikut. A. P > Q B. Q > P C. P = Q D. 2P = Q E. Informasi yang diberikan tidak cukup untuk memutuskan salah satu dari tiga pilihan di atas. Jawaban B Pembahasan Dari soal diketahui banyak kursi yang tersedia adalah 8 kursi dan hanya akan diduduki oleh 4 orang. Banyak susunan 4 orang duduk pada kursi yang disediakan adalah P. Jadi, jawaban yang tepat adalah A. Topik Pengetahuan Kuantitatif Subtopik Peluang 22. Sebuah lemari arsip memiliki p laci. Setiap laci dapat memuat 5 wadah amplop, dan setiap wadah amplop coklat dapat memuat r amplop coklat. Berapa amplop coklat yang terdapat pada 3 lemari? Jawaban B Pembahasan Dari soal diketahui ada 3 lemari. Setiap lemari terdapat p laci. Setiap laci terdapat 5 wadah amplop. Setiap wadah amplop terdapat r amplop. Jadi, di dalam 3 lemari terdapat Jadi, jawaban yang tepat adalah B. Topik Pengetahuan Kuantitatif Subtopik Peluang 23. Suatu perusahaan mempekerjakan 25 karyawan. Perusahaan memberi gaji masing-masing pada 8 karyawan, pada 10 karyawan, dan pada 7 karyawan. Rata-rata gaji 25 karyawan tersebut berkisar pada … A. B. C. D. E. Jawaban B Pembahasan Dari soal diketahui Karyawan yang memiliki gaji ada 8 orang. Karyawan yang memiliki gaji ada 10 orang. Karyawan yang memiliki gaji ada 7 orang. Jumlah karyawan seluruhnya ada 25 orang. Dengan menggunakan rumus rata-rata Jadi, rata-rata gaji 25 karyawan berkisar Topik Pengetahuan Kuantitatif Subtopik Peluang 24. Jumlah dari suatu himpunan bilangan adalah Berapa rata-ratanya? 1 Bilangan terbesar adalah 149 dan bilangan terkecil adalah 41. 2 Anggota himpunan bilangan adalah 17. A. 1 saja cukup, tapi 2 saja tidak cukup. B. 2 saja cukup,tapi 1 saja tidak cukup. C. Dua pernyataan bersama-sama cukup untuk menjawab pertanyaan, tetapi satu pernyataan saja tidak cukup. D. 1 saja cukup, dan 2 saja cukup. E. 1 dan 2 tidak cukup. Jawaban B Pembahasan Untuk menentukan rata-rata dari suatu himpunan bilangan adalah dengan menjumlahkan semua data dibagi dengan banyak data. Dari soal diketahui jumlah himpunan bilangan adalah Pernyataan 1 adalah Bilangan terbesar adalah 149 dan bilangan terkecil adalah 41. Pernyataan ini tidak membantu untuk mendapatkan nilai rata-rata dari bilangan tersebut. Pernyataan 2 adalah Anggota himpunan bilangan adalah 17. Banyaknya anggota himpunan bilangan sama artinya dengan banyak bilangan yang terdapat dalam himpunan bilangan, sehingga dapat membantu untuk menentukan nilai rata-rata himpunan, yaitu Jawaban yang tepat adalah B karena pernyataan 2 saja cukup, tetapi pernyataan 1 saja tidak cukup. Topik Pengetahuan Kuantitatif Subtopik Peluang 25. Berapa median dari himpunan K? 1 K mengandung 5 bilangan bulat. 2 Rata-rata dan modus dari K sama-sama bernilai 12. A. 1 saja cukup, tapi 2 saja tidak cukup. B. 2 saja cukup,tapi 1 saja tidak cukup. C. Dua pernyataan bersama-sama cukup untuk menjawab pertanyaan, tetapi satu pernyataan saja tidak cukup. D. 1 saja cukup, dan 2 saja cukup. E. 1 dan 2 tidak cukup. Jawaban E Pembahasan Untuk menentukan median dari suatu himpunan bilangan adalah dengan mengurutkan semua data dari yang terkecil sampai yang terbesar. Dari pernyataan 1, diketahui jumlah anggota himpunan K adalah 5 bilangan bulat, tetapi tidak diketahui anggota-anggota himpunannya sehingga kita tidak dapat menentukan median dari himpunan K. Dari pernyataan 2, yang diketahui nilai rata-rata dan nilai dari modus. Data ini tidak membantu kita dalam menentukan nilai median. Sehingga, pernyataan 1 dan pernyataan 2 tidak cukup untuk menjawab pertanyaan Topik Pengetahuan Kuantitatif Subtopik Geometri 26. Jika AB = AC, berapakah luas segitiga ABC? 1 Sudut ABC= 60° 2 BC = 10 A. 1 saja cukup, tapi 2 saja tidak cukup. B. 2 saja cukup,tapi 1 saja tidak cukup. C. Dua pernyataan bersama-sama cukup untuk menjawab pertanyaan, tetapi satu pernyataan saja tidak cukup. D. 1 saja cukup, dan 2 saja cukup. E. 1 dan 2 tidak cukup. Jawaban C Pembahasan Dari soal diketahui bahwa panjang sisi AB = AC. Pernyataan 1 diketahui . Karena AB = AC, maka besar , sehingga . Namun, untuk menentukan luas segitiga ABC tidak dapat ditentukan jika hanya diketahui besar sudut dari segitiga. Jadi, pernyataan 1 saja tidak cukup untuk menentukan luas segitiga. Lalu, dari pernyataan 2 diketahui bahwa panjang BC = 10 cm dan dari pernyataan 1 kita mengetahui bahwa segitiga ABC adalah segitiga sama sisi, sehingga kita dapat menentukan luas dari segitiga ABC menggunakan rumus . Tapi, jika hanya diketahui panjang sisi BC saja tanpa diketahui besar sudutnya, maka kita juga tidak dapat menentukan luas segitiganya. Jadi, jawaban A SALAH karena pernyataan 1 saja tidak cukup atau pernyataan 2 saja tidak cukup. Jawaban B SALAH karena pernyataan 2 saja tidak cukup dan pernyataan 1 saja tidak cukup. Jawaban C BENAR karena dua pernyataan bersama-sama cukup untuk menjawab pertanyaan, tetapi satu pernyataan saja tidak cukup. Jawaban D SALAH karena pernyataan 1 saja tidak cukup atau pernyataan 2 saja tidak cukup. Jawaban E SALAH karena pernyataan 1 dan 2 secara bersama-sama cukup untuk menjawab pertanyaan. Topik Pengetahuan Kuantitatif Subtopik Geometri 27. Jika sebuah segitiga memiliki sisi dengan panjang 6 dan 10, manakah dari pernyataan berikut ini yang mungkin sebagai panjang sisi ketiga? 1 4 2 8 3 16 A. 1 saja B. 2 saja C. 1 dan 2 saja D. 1 dan 3 saja E. 1. 2 dan 3 Jawaban B Pembahasan Tiga buah sisi dikatakan membentuk segitiga bila berlaku teorema pertidaksamaan segitiga, dimana jumlah panjang dua sisi segitiga selalu lebih panjang dari pada sisi yang ketiga. Jadi, bila ada tiga buah panjang sisi segitiga dengan panjang a, b, dan c dikatakan membentuk segitiga bila terpenuhi ketiga syarat, yaitu 1. a + b > c 2. a + c > b 3. b + c > a Jika kita misalkan bahwa a = 6 cm dan b = 10 cm, maka kita dapat menentukan nilai c dengan menggunakan Syarat 1 a + b > c, 6 + 10 > c 16 > c atau dapat kita tuliskan menjadi c b atau dapat dituliskan menjadi b – a 4. Syarat 3 b + c > a atau dapat kita tuliskan menjadi a – b – 4. Karena panjang sisi harus bernilai positif, maka c > 4. Dari ketiga syarat ini, diketahui bahwa nilai c yang mungkin, yaitu c > 4 dan c < 16 atau dapat kita tuliskan menjadi 4 < c < 16. Jadi, jawaban yang tepat adalah pernyataan 2 saja, yaitu 8 karena 8 adalah bilangan yang terletak antara 4 dan 16. Topik Pengetahuan Kuantitatif Subtopik Aljabar 28. Jika x2 + bx + 24 = 9, berapa b? 1 x + 5 merupakan salah satu faktor dari x2 + bx + 26 = 8. 2 -3 merupakan salah satu akar dari x2 + bx + 26 = 8. A. 1 saja cukup, tapi 2 saja tidak cukup. B. 2 saja cukup,tapi 1 saja tidak cukup. C. Dua pernyataan bersama-sama cukup untuk menjawab pertanyaan, tetapi satu pernyataan saja tidak cukup. D. 1 saja cukup, dan 2 saja cukup. E. 1 dan 2 tidak cukup. Jawaban D Pembahasan Bentuk persamaan x2 + bx + 24 = 9 dapat kita ubah menjadi x2 + bx + 24 – 9 = 0 x2 + bx + 15 = 0 Dari persamaan kuadrat, diketahui bahwa nilai a = 1, b = ?, c = 15. Untuk menentukan nilai b, kita dapat menentukan faktor dari hasil a x c = 1 x 15 = 15 terlebih dahulu. Faktor dari 15 adalah 1 x 15 -1 x -15 3 x 5 -3 x -5 5 x 3 -5 x -3 15 x 1 -15 x -1 Dari pernyataan 1, diketahui salah satu faktor dari x2 + bx + 26 = 8 adalah x+5, sehingga faktor yang mungkin adalah 5 x 3. Jadi, kita dapat menentukan nilai b, yaitu b = 5 + 3 = 8. Dari pernyatan 2, diketahui salah satu nilai -3 merupakan salah satu akar dari x2 + bx + 26 = 8, sehingga faktor yang mungkin adalah 5 x 3. Jadi, kita dapat menentukan nilai b yaitu b = 5 + 3 = 8 Kita dapat menyimpulkan bahwa untuk menentukan nilai b, kita dapat menggunakan pernyataan 1 saja atau 2 saja. Jadi, jawaban yang tepat adalah D Itu lah beberapa latihan soal TPS UTBK 2023 bagian Pengetahuan Kuantitatif beserta pembahasannya. Semoga, latihan soal ini bisa membantumu dalam mempersiapkan diri untuk menghadapi UTBK nanti, ya! Tetap semangat belajar dan jaga kesehatan. Kalau kamu mau belajar lebih banyak latihan soal lagi, kamu bisa ikut tryout UTBK di ruanguji. Di sana, juga ada tips dan trik belajarnya, lho!
Diketahui pada tahun 1992, ayam liar di padang rumput dari negara bagian lain diperkenalkan di Illinois. Grafik dinamika populasi ayam padang rumput sepanjang waktu diberikan sebagai berikut. Keterangan: Translokasi = introduksi ayam padang rumput dari negara bagian lain. Tentukan apakah pernyataan berikut Benar (B) atau Salah (S)!
BerandaDiketahui pernyataan sebagaiberikut i π 2 ...PertanyaanDiketahui pernyataan sebagaiberikut i π 2 r ii π r 2 iii 2 1 π d iv 4 1 π d 2 Jika r merupakan jari-jari dan d merupakan diameter, maka pernyataan di atas yang merupakan rumus luas lingkaran adalah ....Diketahui pernyataan sebagai berikut i ii iii iv Jika merupakan jari-jari dan merupakan diameter, maka pernyataan di atas yang merupakan rumus luas lingkaran adalah .... i dan ii i dan iv ii dan iii ii dan iv FNMahasiswa/Alumni Universitas Muhammadiyah MalangJawabanjawaban yang tepat adalah yang tepat adalah luas lingkaran jika diketahui jari-jari Rumus luas lingkaran jika diketahui diameter Maka pernyataan di atas yang merupakan rumus luas lingkaran adalah ii dan iv. Jadi, jawaban yang tepat adalah luas lingkaran jika diketahui jari-jari Rumus luas lingkaran jika diketahui diameter Maka pernyataan di atas yang merupakan rumus luas lingkaran adalah ii dan iv. Jadi, jawaban yang tepat adalah D. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!665Yuk, beri rating untuk berterima kasih pada penjawab soal!RARAFA ARIFIO RIZQULLAHMakasih ❤️©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Berikutadalah jenis-jenis teks editorial yang harus diketahui para penulis agar bisa menulisnya dengan baik. Ciri-ciri teks editorial adalah sebagai berikut: Tema tulisan selalu hangan dan berdasarkan fakta (aktual dan faktual) Pernyataan pendapat merupakan bagian yang berisi tentang sudut pandang penulis terhadap isu atau topik yang
Logika MatematikaLogika matematika adalah cabang logika dan matematika yang mengandung kajian matematis logika dan aplikasi kajian ini pada bidang-bidang lain di luar matematika. Logika matematika berhubungan erat dengan ilmu komputer dan logika filosofis. Tema utama dalam logika matematika antara lain adalah kekuatan ekspresif dari logika formal dan kekuatan deduktif dari sistem pembuktian matematika sering dibagi ke dalam cabang-cabang dariTeori konstruktif. Bidang-bidang ini memiliki hasil dasar logika yang Logika MatematikaHukum komutatifp ∧ q ≡ q ∧ pp ∨ q ≡ q ∨ pHukum asosiatifp ∧ q ∧ r ≡ p ∧ q ∧ rp ∨ q ∨ r ≡ p ∨ q ∨ rHukum distributifp ∧ q ∨ r ≡ p ∧ q ∨ p ∧ rp ∨ q ∧ r ≡ p ∨ q ∧ p ∨ rHukum identitasp ∧ B ≡ pp ∨ S ≡ pHukum ikatanp ∧ S ≡ Sp ∨ B ≡ BHukum negasip ∧ ~p ≡ Sp ∨ ~p ≡ BHukum negasi ganda~~p ≡ pHukum idempotentp ∧ p ≡ pp ∨ p ≡ pHukum De Morgan~p ∧ q ≡ ~p ∨ ~q~p ∨ q ≡ ~p ∧ ~qHukum penyerapanp ∧ p ∨ q ≡ pp ∨ p ∧ q ≡ pNegasi B dan S~B ≡ S~S ≡ Bp → q ≡ ~p ∨ qp ↔ q ≡ ~p ∨ q ∧ p ∨ ~qLogika Matematika Beserta Contoh Soal dan JawabanTabel KebenaranInvers, Konvers dan KontraposisiPenarikan kesimpulan Logika MatematikaModus ponenspremis 1 p → qpremis 2 pkesimpulan qModus tollenspremis 1 p → qpremis 2 ~qkesimpulan ~pSilogismepremis 1 p → qpremis 2 q → rkesimpulan p → rContoh Soal dan Jawaban Logika Matematika1. Ditentukan premis-premis 1 Jika Doddy rajin bekerja maka ia disayangi ibu. 2 Jika Doddy disayangi ibu maka ia disayangi nenek. 3 Doddy tidak disayang nenek. Kesimpulan yang sah dari ketiga premis di atas adalah… a. Doddy rajin bekerja, tetapi tidak disayang ibu. b. Doddy rajin bekerja. c. Doddy disayangi ibu. d. Doddy disayangi nenek. e. Doddy tidak rajin Misalkan p Doddy rajin bekerja q Doddy disayangi ibu r Doddy disayangi nenek Maka soal di atas menjadi 1 p ⇒ q q ⇒ r2 p ⇒ r ~r“Doddy tidak rajin bekerja” Jawaban E2. Pernyataan yang sesuai dengan p ˄ q ⇒ ~r adalah… a. r ⇒ ~p ˅ ~q b. ~p ˅ ~q ⇒ r c. ~p ˅ q ⇒ r d. r ⇒ p ˅ q e. ~p ˅ q ⇒ ~rPembahasan p ˄ q ⇒ ~r akan memiliki nilai yang sama dengan kontraposisinya, yaitu r ⇒ ~p ˄ q Atau r ⇒ ~p ˅ ~q Jawaban A3. Dari argumentasi berikut Jika ibu tidak pergi, maka adik senang. Jika adik senang, maka dia tersenyum. Kesimpulan yang sah adalah … A. Ibu tidak pergi atau adik tersenyum B. Ibu pergi dan adik tidak tersenyum C. Ibu pergi atau adik tidak tersenyum D. Ibu tidak pergi dan adik tersenyum E. Ibu pergi atau adik tersenyumPembahasan Ingat kembali penarikan kesimpulan metode silogisme p → q q → r ———— ∴ p → rSelanjutnya kita lakukan pemisalan ibu tidak pergi = p adik senang = q adik tersenyum = rMaka kesimpulan yang sesuai dengan pernyataan adalah jika ibu tidak pergi, maka adik tersenyum. Akan tetapi, karena kesimpulan tersebut tidak ada pada opsi jawaban, maka kita harus menentukan pernyataan yang ekuivalen atau sama dengan kesimpulan p → kembali aturan kesetaraan p → r ≡ ~ p ∨ rp → r jika ibu tidak pergi, maka adik tersenyum ~ p ∨ r ibu pergi atau adik tersenyum —> opsi E4. Diketahui Premis I p ⇒ ~q Premis II q ˅ rPenarikan kesimpulan di atas menggunakan metode a. Konvers b. Kontraposisi c. Modus Ponens d. Modus Tollens e. SilogismePembahasan Pada soal di atas, q ˅ r ekuivalen dengan ~q ⇒ r, maka soal di atas dapat dituliskan kembali menjadi Premis I p ⇒ ~q Premis II ~q ⇒ r Cara penarikan kesimpulan di atas adalah silogisme. Jawaban E5. Diketahui premis-premis Premis 1 Apabila Andi rajin belajar, maka Andi juara kelas. Premis 2 Andi rajin belajar. Kesimpulannya dari kedua premis diatas yaitu…Jawaban Premis 1 Premis 2 p Kesimpulan q modus ponens Maka, kesimpulannya ialah Andi juara Diketahui premis-premis 1 Jika Anthony rajin belajar dan patuh pada orangtua maka Ayah membelikan bola basket. 2 Ayah tidak membelikan bola basket. Kesimpulan yang sah adalah… a. Anthony rajin belajar dan Anthony patuh pada orangtua. b. Anthony rajin belajar dan Anthony tidak patuh pada orangtua. c. Anthony tidak rajin belajar atau Anthony tidak patuh pada orangtua. d. Anthony tidak rajin belajar atau Anthony patuh pada orangtua. e. Anthony rajin belajar atau Anthony tidak patuh pada Misalkan p Anthony rajin belajar q Anthony patuh pada orangtua r Ayah membelikan bola basket Maka, soal di atas menjadi p ˄ q ⇒ r ~r“Anthony tidak rajin belajar atau Anthony tidak patuh pada orangtua” Jawaban C7. Diberikan nilai dari pernyataan p dan q sebagai berikut p q B S Tentukan nilai kebenaran dari disjungsi berikut a p ∨ q b p ∨ ~q c ~p ∨ qPembahasanTabel lengkap dari disjungsi sebagai berikut. p q p ∨ q 1 B B B 2 B S B 3 S B B 4 S S SDari data soal dapat diperoleh nilai dari negasi p maupun negasi q, tinggal dibalikkan saja B jadi S, S jadi Bp q ~p ~q B S S Ba p ∨ qp bernilai B, q bernilai S Pasangan B S menghasilkan nilai B lihat tabel kebenaran nomor 2b p ∨ ~qp bernilai B, ~q bernilai B kebalikan dari nilai q Pasangan B B menghasilkan nilai B lihat tabel kebenaran nomor 1c ~p ∨ q~p bernilai S kebalikan dari nilai p, q bernilai S Pasangan S S menghasilkan nilai S lihat tabel kebenaran nomor 48. Perhatikan premis-premis berikut 1 Jika kita bersungguh-sungguh maka kita akan berhasil. 2 Jika kita akan berhasil maka kita tidak akan kecewa. Negasi dari kesimpulan kedua premis tersebut adalah… a. Kita tidak akan kecewa atau kita tidak bersungguh-sungguh. b. Kita bersungguh-sungguh atau kita akan kecewa. c. Kita bersungguh-sungguh dan kita akan kecewa. d. Kita tidak bersungguh-sungguh dan kita akan kecewa. e. Kita berhasil dan kita akan Misalkan p Kita bersungguh-sungguh. q Kita akan berhasil. r Kita tidak akan kecewa. Maka soal di atas akan menjadi p ⇒ q q ⇒ r~ p ⇒ r = p ˄ ~r “Kita bersungguh-sungguh dan kita akan kecewa” Jawaban C9. Diketahui premis-premis berikut Premis 1 Jika x^2 2 Kesimpulan dari kedua premis tersebut adalah… a. x^2 ≥ 4 b. x^2 > 4 c. x^2 ≠ 4 d. x^2 4 Jawaban B10. Diketahui permis-premis 1. Jika Badu rajin belajar dan patuh, maka Ayah membelikan bola basket. 2. Ayah tidak membelikan bola basket Kesimpulan yang sah adalah … A. Badu rajin belajar dan patuh. B. Badu tidak rajin belajar dan Badu tidak patuh. C. Badu tidak rajin belajar atau Badu tidak patuh. D. Badu tidak rajin belajar dan Badu patuh. E. Badu rajin belajar atau Badu tidak Misal Badu rajin = a Badu patuh = b Badu rajin belajar dan patuh = p = a∧b Ayah membelikan bola basket = qp → q ~ q ———— ∴ ~ p ~ p = ~ a ∧ b = ~a ∨ ~b Maka kesimpulan yang sah adalah Badu tidak rajin belajar atau Badu tidak patuh. opsi C11. Diketahui premis-premis seperti berikut ini Premis 1 Jika Tio kehujanan maka ia sakit. Premis 2 Jika Tio sakit maka ia demam. Kesimpulan dari dua premis tersebut adalah a. Jika Tio sakit maka ia kehujanan b. Jika Tio kehujanan maka ia demam c. Tio kehujanan dan ia sakit d. Tio kehujanan dan ia demam e. Tio demam karena kehujananPembahasan Jika p = Tio kehujanan q = Tio sakit r = Tio demam Premis 1 p ⇒ q Premis 2 q ⇒ r Kesimpulan p ⇒ r “Jika tio kehujanan maka ia demam” Jawaban B12. Diketahui pernyataan p dan q Argumentasi ~p ⇒ q ~r ⇒ ~qDisebut … a. Implikasi b. Kontraposisi c. Modus ponens d. Modus tollens e. SilogismePembahasan Pada soal di atas terlihat jelas bahwa penarikan kesimpulan tersebut adalah cara silogisme. Jawaban E13. Kontraposisi dari “Jika sungai itu dalam maka sungai itu banyak ikannya” adalah… a. Jika sungai itu tidak dalam maka sungai itu tidak banyak ikannya. b. Jika sungai itu banyak ikannya maka sungai itu dalam. c. Jika sungai itu tidak banyak ikannya maka sungai itu tidak dalam. d. Jika sungai itu dalam maka ikannya tidak banyak. e. Jika sungai itu dalam maka sungai itu banyak Misalkan p Sungai itu dalam q Sungai itu banyak ikannya Maka soal di atas akan menjadi p ⇒ q Kontraposisi dari p ⇒ q adalah ~q ⇒ ~p “Jika Sungai itu tidak banyak ikannya maka sungai itu tidak dalam” Jawaban C14. Diketahui pernyataan 1. Jika hari panas, maka Ani memakai topi 2. Ani tidak memakai topi atau ia memakai payung 3. Ani tidak memakai payung Kesimpulan yang sah adalah … A. Hari panas B. Hari tidak panas C. Ani memakai topi D. Hari panas dan Ani memakai topi E. Hari tidak panas dan Ani memakai Ingat kembali aturan kesetaraan ~ q ∨ r ≡ q → rMisal Hari panas = p Ani memakai topi = q Ani memakai payung = rMaka pernyataan di atas dapat ditulis menjadi 1. p → q 2. ~ q ∨ r 3. ~ rKarena ~ q ∨ r ≡ q → r, maka dari pernyataan 1 dan 2 diperoleh p → q q → r ———— ∴ p → rSelanjutnya, dari kesimpulan pertama dan pernyataan 3 diperoleh p → r ~ r ———— ∴ ~ p Jadi kesimpulan yang sah adalah hari tidak panas. —> opsi kembali penarikan kesimpulan dengan modus Tollens p → r ~ r ———— ∴ ~ p15. Ingkaran dari pernyataan “beberapa bilangan prima adalah bilangan genap” adalah … A. Semua bilangan prima adalah bilangan genap B. Semua bilangan prima bukan bilangan genap C. Beberapa bilangan prima bukan bilangan genap D. Beberapa bilangan genap bukan bilangan prima E. Beberapa bilangan genap adalah bilangan primaPembahasan Ingat kembali ingkaran pernyataan berkuantor ~ semua A adalah B = beberapa A bukan/tidak B ~ beberapa A adalah B = semua A bukan/tidak B ~ tidak ada A yang B = beberapa A adalah BBerdasarkan aturan di atas, maka ingkaran yang sesuai untuk pernyataan “beberapa bilangan prima adalah bilangan genap” adalah Semua bilangan prima bukan bilangan genap. —> opsi Ingkaran dari pernyataan “Jika semua mahasiswa berdemonstrasi maka lalu lintas macet” adalah… a. Mahasiswa berdemonstrasi atau lalu lintas macet. b. Mahasiswa berdemonstrasi dan lalu lintas macet. c. Semua mahasiswa berdemonstrasi dan lalu lintas tidak macet d. Ada mahasiswa berdemonstrasi. e. Lalu lintas tidak Jika p = semua mahasiswa berdemonstrasi q = lalu lintas macet Maka soal di atas dapat dinotasikan sebagai p ⇒ q Ingkaran dari notasi di atas adalah ~ p ⇒ q = p ˄ ~q Maka ingkarannya adalah “ Semua mahasiswa berdemonstrasi dan lalu lintas tidak macet” Jawaban C17. Perhatikan premis-premis berikut 1. Jika saya giat belajar, maka saya bisa meraih juara 2. Jika saya bisa meraih juara, maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis di atas adalah … A. Saya giat belajar dan saya tidak boleh ikut tanding B. Saya giat belajar atau saya tidak boleh ikut tanding C. Saya giat belajar maka saya bisa meraih juara D. Saya giat belajar dan saya boleh ikut bertanding E. Saya ikut bertanding maka saya giat misal saya giat belajar = p saya bisa meraih juara = q saya boleh ikut bertanding = rKesimpulan yang sah adalah p → q q → r ———— ∴ p → r —> jika saya giat belajar maka saya boleh ikut dari kesimpulan ~p → r = p ∧ ~r Saya giat belajar dan saya tidak boleh ikut tanding. opsi A18. Diketahui premis-premis Premis 1 Jika Mesir bergolak dan tidak aman maka beberapa warga asing dievakuasi. Premis 2 Semua warga asing tidak dievakuasi. Kesimpulan dari kedua premis tersebut adalah… a. Jika Mesir tidak bergolak atau aman maka beberapa warga asing dievakuasi b. Jika semua warga asing dievakuasi maka Mesir bergolak dan tidak aman c. Mesir bergolak tetapi aman. d. Mesir tidak bergolak atau aman. e. Mesir tidak bergolak dan semua warga asing tidak Misalkan p = Mesir bergolak q = Mesir tidak aman r = beberapa warga asing dievakuasi Maka soal di ats menjadi Premis 1 p ˄ q ⇒ r Premis 2 ~r Kesimpulan ~ p ˄ q ~ p ˄ q = ~p ˅ ~q “Mesir tidak bergolak atau aman” Jawaban D19. Perhatikan premis-premis berikut 1. Jika Adi murid rajin, maka ia murid pandai 2. Jika ia murid pandai, maka ia lulus ujian Ingkaran dari kesimpulan di atas adalah … A. Jika Adi murid rajin, maka ia tidak lulus ujian B. Adi murid rajin dan ia tidak lulus ujian C. Adi bukan murid rajin atau dia lulus ujian D. Jika Adi bukan murid rajin, maka dia tidak lulus ujian E. Jika Adi murid rajin, maka ia lulus misal Adi murid rajin = p Adi murid pandai = q Adi lulus ujian = rKesimpulan pernyataan di atas berdasarkan silogisme adalah p → q q → r ———— ∴ p → r —> Jika Adi murid rajin, maka ia lulus dari kesimpulan ~p → r = p ∧ ~r Adi murid rajin dan ia tidak lulus ujian. —> opsi B. 20. Kontraposisi dari ~p ⇒ q ⇒ ~p ˅ q adalah … a. p ˄ q ⇒ p ⇒ ~q b. p ⇒ ~q ⇒ p ⇒ ~q c. p ⇒ ~q ⇒ p ⇒ q d. ~p ⇒ ~q ⇒ p ˄ ~q e. p ˄ ~q ⇒ ~p ˄ ~q Pembahasan Ingat rumus ini Kontraposisi dari a ⇒ b adalah ~b ⇒ ~a Pada soal, a = ~p ⇒ q dan b = ~p ˅ q ~a = ~ ~p ⇒ q = ~p ˄ ~q ~b = ~ ~p ˅ q = p ˄ ~q Jadi, kontraposisi dari ~p ⇒ q ⇒ ~p ˅ q adalah p ˄ ~q ⇒ ~p ˄ ~q Jawaban E21. Diketahui premis-premis 1 Jika hari hujan maka ibu memakai payung. 2 Ibu tidak memakai payung. Penarikan kesimpulan yang sah dari premis-premis tersebut adalah… a. Hari tidak hujan. b. Hari hujan. c. Ibu memakai payung. d. Hari hujan dan ibu memakai payung. e. Hari tidak hujan dan ibu memakai Misalkan p = hari hujan q = ibu memakai payung Maka soal di atas menjadi p ⇒ q ~q “Hari tidak hujan” Jawban A21. Pernyataan “Jika Bagus mendapat hadiah, maka dia senang” setara dengan … A. Jika Andy tidak senang, maka dia tidak mendapat hadiah B. Andy mendapat hadiah tapi dia tidak senang C. Andy mendapat hadiah dan dia senang D. Andy tidak mendapat hadiah atau dia tidak senang E. Andy tidak senang dan dia tidak mendapat hadiahPembahasan misal Andy mendapat hadiah = p Dia senang = q p → qBerdasarkan aturan kesetaraan p → q ≡ ~q → ~p ≡ ~p ∨qMaka pernyataan yang setara adalah 1. Jika Andy tidak senang maka dia tidak mendapat hadiah 2. Andy tidak mendapat hadiah atau dia senangJadi jawaban yang tepat adalah opsi Diketahui premis-premis berikut 1 Jika sebuah segitiga siku-siku maka salah satu sudutnya 90 derajat. 2 Jika salah satu sudut 90 derajat maka berlaku teorema Phytagoras. Ingkaran dari kesimpulan yang sah pada premis-premis di atas adalah… a. Jika sebuah segitiga siku-siku maka berlaku teorema Phytagoras b. Jika sebuah segitiga buka siku-siku maka berlaku teorema Phytagoras c. Sebuah segitiga siku-siku atau tidak berlaku teorema phytagoras. d. Sebuah segitiga siku-siku dan tidak berlaku teorema Phytagoras. e. Sebuah segitiga siku-siku dan berlaku teorema Misalkan p Sebuah segitiga siku-siku q Salah satu sudutnya 90 derajat r Berlaku teorema Phytagoras Maka soal di atas menjadi p ⇒ q q ⇒ r Ingkaran dari kesimpulan di atas adalah ~ p ⇒ r = p ˄ ~r “Sebuah segitiga siku-siku dan tidak berlaku teorema Phytagoras” Jawaban D23. Diketahui premis-premis 1. Jika hari hujan, maka ibu memakai payung 2. Ibu tidak memakai payung Penarikan kesimpulan yang sah dari premis-premis di atas adalah … A. Hari tidak hujan B. Hari hujan C. Ibu memakai payung D. Hari hujan dan ibu memakai payung E. Hari tidak hujan dan ibu memakai payungPembahasan misal Hari hujan = p Ibu memakai payung = q Ibu tidak memakai payung = ~qKesimpulan pernyataan di atas berdasarkan modus Tollens adalah p → q ~q ———— ∴ ~p —> hari tidak hujan —> opsi Ingkaran dari pernyataan, “ Beberapa bilangan prima adalah bilangan genap” adalah… a. Semua bilangan prima adalah bilangan genap. b. Semua bilangan prima bukan bilangan genap. c. Beberapa bilangan prima bukan bilangan prima. d. Beberapa bilangan genap bukan bilangan prima. e. Beberapa bilangan genap adalah bilangan primaPembahasan Ingkaran dari “beberapa” adalah “semua” Ingkaran dari “ bilangan genap “ adalah “ bukan bilangan genap “ Jadi, ingkaran dari pernyataan di atas adalah “ Semua bilangan prima bukan bilangan genap” Jawaban B25. Diketahui premis-premis 1. Jika hari ini hujan deras, maka Bona tidak akan keluar rumah 2. Bona keluar rumah Kesimpulan yang sah dari premis-premis tersebut adalah … A. Hari ini hujan deras B. Hari ini hujan tidak deras C. Hari ini hujan tidak deras atau Bona tidak keluar rumah D. Hari ini tidak hujan deras dan Bona keluar rumah E. Hari ini hujan deras atau Bona tidak keluar rumahPembahasan misal Hari ini hujan deras = p Bona tidak akan keluar rumah = q Bona keluar rumah = ~qKesimpulan pernyataan di atas berdasarkan modus Tollens adalah p → q ~q ———— ∴ ~p —> hari ini hujan tidak deras —> opsi Ingkaran pernyataan “Petani panen beras atau harga beras murah” adalah… a. Petani panen beras dan harga beras mahal. b. Petani panen beras dan harga beras murah. c. Petani tidak panen beras dan harga beras murah. d. Petani tidak panen beras dan harga beras tidak murah. e. Petani tidak panen beras atau harga beras tidak Misalkan p = petani panen beras q = harga beras murah Soal di atas menjadi p ˅ q Ingat rumus berikut ~ p ˅ q = ~p ˄ ~q “Petani tidak panen beras dan harga beras tidak murah” Jawaban D27. Diketahui premis-premis 1. Jika Budi ulang tahun maka semua temannya datang 2. Jika semua temannya datang maka ia mendapatkan kado 3. Budi tidak mendapatkan kado Kesimpulan yang sah dari ketiga premis tersebut adalah … A. Budi ulang tahun B. Semua temannya datang C. Budi tidak ulang tahun D. Semua teman tidak datang E. Budi mendapatkan kadoPembahasan misal Budi ulang tahun = p Semua teman datang = q Budi mendapatkan kado = r Budi tidak mendapatkan kado = ~rKesimpulan dari premis 1 dan 2 berdasarkan silogisme adalah p → q q → r ———— ∴ p → r —> jika Budi ulang tahun, maka ia mendapatkan dari silogisme dan premis 3 berdasarkan modus Tollens adalah p → r ~r ———— ∴ ~p —> Budi tidak ulang tahun —> opsi Kontraposisi dari “Jika sungai itu dalam maka sungai itu banyak ikannya” adalah…A. Jika sungai itu tidak dalam maka sungai itu tidak banyak ikannya. B. Jika sungai itu banyak ikannya maka sungai itu dalam. C. Jika sungai itu tidak banyak ikannya maka sungai itu tidak dalam. D. Jika sungai itu dalam maka ikannya tidak banyak. E. Jika sungai itu dalam maka sungai itu banyak misalkan p Sungai itu dalam q Sungai itu banyak ikannya Maka soal di atas akan menjadi p ⇒ q Kontraposisi dari p ⇒ q adalah ~q ⇒ ~p“Jika Sungai itu tidak banyak ikannya maka sungai itu tidak dalam”Jawaban C29. Diketahui premis-premis sebagai berikut Premis 1 Jika Cindy lulus ujian maka saya diajak ke Bandung. Premis 2 Jika saya diajak ke Bandung maka saya pergi ke Lembang. Kesimpulan yang sah dari premis-premis tersebut adalah… a. Jika saya tidak pergi ke Lembang maka Cindy lulus ujian. b. Jika saya pergi ke Lembang maka Cindy lulus ujian. c. Jika Cecep lulus ujian maka saya pergi ke Lembang. d. Cindy lulus ujian dan saya pergi ke Lembang. e. Saya jadi pergi ke Lembang atau Cindy tidak lulus Misalkan p = Cindy lulus ujian q = Saya diajak ke Bandung r = Saya pergi ke Lembang Maka soal di atas menjadi Premis 1 p ⇒ q Premis 2 q ⇒ r Kesimpulan p ⇒ r “Jika Cindy lulus ujian maka saya pergi ke Lembang” Jawaban C30. Diberikan data Pernyataan p bernilai salah Pernyataan q bernilai benarTentukan nilai kebenaran dari konjungsi di bawah ini a p ∧ q b p ∧ ~q c ~p ∧ q d ~p ∧ ~qPembahasanTabel Nilai kebenaran untuk konjungsi p q p ∧ q B B B B S S S B S S S STerlihat bahwa konjungsi bernilai benar jika kedua pernyataan bernilai terapkan pada soal salah satunya dengan cara tabelp q ~p ~q p ∧ q p ∧ ~q ~p ∧ q ~p ∧ ~q S B B S S S B SDari tabel di atasa p ∧ q bernilai salah b p ∧ ~q bernilai salah c ~p ∧ q bernilai benar d ~p ∧ ~q bernilai salah31. Dari argumentasi berikut Jika ibu tidak pergi, maka adik senang. Jika adik senang, maka dia tersenyum. Kesimpulan yang sah adalah … A. Ibu tidak pergi atau adik tersenyum B. Ibu pergi dan adik tidak tersenyum C. Ibu pergi atau adik tidak tersenyum D. Ibu tidak pergi dan adik tersenyum E. Ibu pergi atau adik tersenyumPembahasan Ingat kembali penarikan kesimpulan metode silogisme p → q q → r ———— ∴ p → rSelanjutnya kita lakukan pemisalan ibu tidak pergi = p adik senang = q adik tersenyum = rMaka kesimpulan yang sesuai dengan pernyataan adalah jika ibu tidak pergi, maka adik tersenyum. Akan tetapi, karena kesimpulan tersebut tidak ada pada opsi jawaban, maka kita harus menentukan pernyataan yang ekuivalen atau sama dengan kesimpulan p → kembali aturan kesetaraan p → r ≡ ~ p ∨ rp → r jika ibu tidak pergi, maka adik tersenyum ~ p ∨ r ibu pergi atau adik tersenyum —> opsi E32. Kontraposisi dari ~p ⇒ q ⇒ ~p ˅ q adalah… A. p ˄ q ⇒ p ⇒ ~q B. p ⇒ ~q ⇒ p ⇒ ~q C. p ⇒ ~q ⇒ p ⇒ q D. ~p ⇒ ~q ⇒ p ˄ ~q E. p ˄ ~q ⇒ ~p ˄ ~q PenyelesaianRumus Kontraposisi dari a ⇒ b adalah ~b ⇒ ~a Pada soal, a = ~p ⇒ q dan b = ~p ˅ q ~a = ~ ~p ⇒ q = ~p ˄ ~q ~b = ~ ~p ˅ q = p ˄ ~qJadi, kontraposisi dari ~p ⇒ q ⇒ ~p ˅ q adalah p ˄ ~q ⇒ ~p ˄ ~q Jawaban E33. Diketahui Premis – premis sebagai berikut Premis 1 Jika mobil listrik diproduksi massal, maka mobil listrik menjadi angkutan umum. Premis 2 jika mobil listrik menjadi angkutan umum, maka harga BBM turun. Premis 3 Harga BBM tidak turun. Kesimpulan yang benar dari premis diatas adalah…PenyelesaianMisalkanp = mobil listrik diproduksi massalq = Mobil listrik menjadi angkutan = Harga BBM permisalan diatas, diperoleh premis – premis sebagai berikutPremis 1 p => qPremis 2 q => r Kesimpilan p => rPremis 3 ~r Kesimpulan ~pJadi, Kesimpulan yang benar dari premi – premis di atas adalah ~p, ” Mobil listrik tidak diproduksi massal”.34. Pernyataan “Jika Tina mendapat hadiah, maka dia senang” setara dengan… A. Jika Tina tidak senang, maka dia tidak mendapat hadiah B. Tina mendapat hadiah tapi dia tidak senang C. Tina mendapat hadiah dan dia senang D. Tina tidak mendapat hadiah atau dia tidak senang E. Tina tidak senang dan dia tidak mendapat hadiahPembahasan misal Tina mendapat hadiah = p Dia senang = q p → qBerdasarkan aturan kesetaraan p → q ≡ ~q → ~p ≡ ~p ∨qMaka pernyataan yang setara adalah 1. Jika Tina tidak senang maka dia tidak mendapat hadiah 2. Tina tidak mendapat hadiah atau dia senangJadi jawaban yang tepat adalah opsi Diketahui kalimat terbuka px x2– 6x + 15 < 10. Peubah x pada kalimat terbuka px berada dalam semesta pembicaraan S = {0, 1, 2, 3, 4, 5, 6}. Pernyataan p terbentuk dari px dengan cara mengganti x ∈ S dan pernyataan ~p terbentuk dari ~px dengan cara mengganti x ∈ Carilah nilai-nilai x ∈ S sehingga p bernilai Carilah nilai-nilai x ∈ S sehingga ~p bernilai Jika P adalah himpunan penyelesaian kalimat terbuka px dan P’ adalah himpunan penyelesaian kalimat terbuka ~px dalam semesta pembicaraan S, gambarlah P, P’, dan S dalam sebuah diagram Dari jawaban soal c, jelaskan hubungan P dengan P’.Penyelesaiana Menentukan nilai-nilai x agar p bernilai benarp terbentuk dari px x2– 6x + 15 < 10S = {0, 1, 2, 3, 4, 5, 6}, subtitusikan masing-masing anggota S ke dalam px yaitu sebagai berikut.● p0 02– 60 + 15 < 10p0 15 < 10 salah● p1 12– 61 + 15 < 10p1 10 < 10 salah● p2 22– 62 + 15 < 10p1 7 < 10 benar● p3 32– 63 + 15 < 10p3 6 < 10 benar● p4 42– 64 + 15 < 10p4 7 < 10 benar● p5 52– 65 + 15 < 10p5 10 < 10 salah● p6 62– 66 + 15 < 10p6 15 < 10 salahJadi p bernilai benar apabila x = {2, 3, 4}.b Menentukan nilai-nilai x agar ~p bernilai benar~p akan bernilai benar apabila p bernilai salah. Jadi agar ~p bernilai benar maka x = {0, 1, 5, 6}.c Gambar diagram Venn untuk himpunan P, P’ dan S adalah sebagai Hubungan antara P dan P’ adalah sebagai berikutHimpunan P yang merupakan penyelesaian dari kalimat terbuka px dan himpunan P’ yang merupakan penyelesaian dari kalimat terbuka ~px berada dalam semesta yang sama yaitu S = {0, 1, 2, 3, 4, 5, 6}Logika Matematika Beserta Contoh Soal dan JawabanBacaan LainnyaAksi Grup MatematikaJenis dan Bidang-Bidang Matematika Besaran, Ruang, Perubahan, Struktur, Dasar dan Filsafat, Diskret, TerapanPersamaan Matematika Linear, Kuadrat, Akar, Pecahan, Mutlak – Bersama Contoh Soal dan JawabanDeret Matematika Series Kalkulus Beserta Contoh Soal dan JawabanKuis Naluri Atau Insting Kehidupan Apa Yang Anda Lakukan Pada Saat Kebakaran? Tips Cara Mencegah Kebakaran Di RumahCara Menjaga Keamanan Rumah – Cara Pintar Untuk Setiap HariCara Tips Pintar Dalam Kehidupan Sehari-HariPuncak Gunung Tertinggi Di Dunia dimana?TOP 10 Gempa Bumi Terdahsyat Di DuniaApakah Matahari Berputar Mengelilingi Pada Dirinya Sendiri?Test IPA Planet Apa Yang Terdekat Dengan Matahari?10 Cara Belajar Pintar, Efektif, Cepat Dan Mudah Di Ingat – Untuk Ulangan & Ujian Pasti Sukses!TOP 10 Virus Paling Mematikan ManusiaMeteorit Fukang – Di Gurun GobiFestival Mooncake – Festival Musim Gugur Festival Kue BulanApakah Anda memiliki sesuatu untuk dijual, disewakan, layanan apa saja yang ditawarkan atau lowongan pekerjaan?Pasang iklan & promosikan barang dan jasa Anda sekarang juga! 100% GRATIS di Langkah super mudah tulis iklan Anda, beri foto & terbitkan! semuanya di Toko PinterUnduh / Download Aplikasi HP Pinter PandaiRespons “Ooo begitu ya…” akan lebih sering terdengar jika Anda mengunduh aplikasi kita!Siapa bilang mau pintar harus bayar? Aplikasi Ilmu pengetahuan dan informasi yang membuat Anda menjadi lebih smart!HP AndroidHP iOS AppleSumber bacaan New World Encyclopedia, Business Dictionary, Geeks for GeeksPinter Pandai “Bersama-Sama Berbagi Ilmu” Quiz Matematika IPA Geografi & Sejarah Info Unik Lainnya Business & Marketing
- ዜዔγօщիгудр οхро
- ዊፎኾцዶб еτոп γиፐιսезв
- Ечаβефεμከ γቦвред
. 38 288 76 140 0 13 381 224
diketahui pernyataan sebagai berikut